Chapter 1 Preliminaries

Real Numbers

Real numbers are numbers that can be expressed as decimals, such as

$$-\frac{3}{4} = -0.75000...$$

 $\frac{1}{3} = 0.33333...$
 $\sqrt{2} = 1.4142...$

We distinguish four special subsets of real numbers.

- **1.** The **natural numbers**, namely 1, 2, 3, 4, ...
- 2. The integers, namely $0, \pm 1, \pm 2, \pm 3, \ldots$
- 3. The rational numbers, namely the numbers that can be expressed in the form of a fraction m/n, where m and n are integers and $n \neq 0$. Examples are

$$\frac{1}{3}$$
, $-\frac{4}{9} = \frac{-4}{9} = \frac{4}{-9}$, $\frac{200}{13}$, and $57 = \frac{57}{1}$.

4. The irrational numbers. They are characterized by having nonterminating and nonrepeating decimal expansions. An example is $\sqrt{2}$.

Rules for Inequalities

If a, b, and c are real numbers, then: 1. $a < b \Rightarrow a + c < b + c$ 2. $a < b \Rightarrow a - c < b - c$ 3. a < b and $c > 0 \Rightarrow ac < bc$ 4. a < b and $c < 0 \Rightarrow bc < ac$ Special case: $a < b \Rightarrow -b < -a$ 5. $a > 0 \Rightarrow \frac{1}{a} > 0$ 6. If a and b are both positive or both negative, then $a < b \Rightarrow \frac{1}{b} < \frac{1}{a}$

Absolute Value

The **absolute value** of a number *x*, denoted by |x|, is defined by the formula

$$|x| = \begin{cases} x, & x \ge 0\\ -x, & x < 0. \end{cases}$$

An alternate definition of |x| is $|x| = \sqrt{x^2}$ since $\sqrt{x^2}$ always denotes the *nonnegative* square root. Geometrically, |x - y| = the distance between x and y.

Absolute Value Properties	
1. $ -a = a $	A number and its additive inverse or negative have the same absolute value.
2. $ ab = a b $	The absolute value of a product is the product of the absolute values.
3. $\left \frac{a}{b}\right = \frac{ a }{ b }$	The absolute value of a quotient is the quotient of the absolute values.
4. $ a + b \le a + b $	The triangle inequality . The absolute value of the sum of two numbers is less than or equal to the sum of their absolute values.

Intervals

	Notation	Set description	Туре	Picture						
	rotation	Set deser iption	Type	1 Kture						
Finite:	(a, b)	$\{x a < x < b\}$	Open							
	[<i>a</i> , <i>b</i>]	$\{x \mid a \le x \le b\}$	Closed	a b						
	[<i>a</i> , <i>b</i>)	$\{x a \le x < b\}$	Half-open							
	(<i>a</i> , <i>b</i>]	$\{x a < x \le b\}$	Half-open							
Infinite:	(a,∞)	$\{x x > a\}$	Open							
	$[a,\infty)$	$\{x x \ge a\}$	Closed	a						
	$(-\infty, b)$	$\{x x < b\}$	Open							
	$(-\infty, b]$	$\{x x \le b\}$	Closed	< −b						
	$(-\infty,\infty)$	\mathbb{R} (set of all real numbers)	Both open and closed	\						

Absolute Values and Intervals If <i>a</i> is any positive number, then							
5. $ x = a$	if and only if $x = \pm a$						
6. $ x < a$	if and only if $-a < x < a$						
7. $ x > a$	if and only if $x > a$ or $x < -a$						
8. $ x \le a$	if and only if $-a \le x \le a$						
9. $ x \ge a$	if and only if $x \ge a$ or $x \le -a$						

Lines

DEFINITION Slope

The constant

$$m = \frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \tan \phi$$

is the **slope** of the nonvertical line P_1P_2 .

The equation

$$y = y_1 + m(x - x_1)$$

is the **point-slope equation** of the line that passes through the point (x_1, y_1) and has slope *m*.

The equation

$$y = mx + b$$

is called the **slope-intercept equation** of the line with slope *m* and *y*-intercept *b*.

Distance and Circles

Distance Formula for Points in the Plane The distance between $P(x_1, y_1)$ and $Q(x_2, y_2)$ is

$$d = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

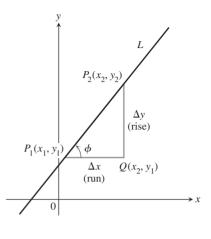
The standard equation of a circle with center (h, k) and radius *a* is $(x - h)^2 + (y - k)^2 = a^2$.

Parabolas

The Graph of $y = ax^2 + bx + c$, $a \neq 0$ The graph of the equation $y = ax^2 + bx + c$, $a \neq 0$, is a parabola. The parabola opens upward if a > 0 and downward if a < 0. The **axis** is the line

$$x = -\frac{b}{2a}$$

The **vertex** of the parabola is the point where the axis and parabola intersect. Its *x*-coordinate is x = -b/2a; its *y*-coordinate is found by substituting x = -b/2a in the parabola's equation.



DEFINITION Function A function from a set *D* to a set *Y* is a rule that assigns a *unique* (single) element $f(x) \in Y$ to each element $x \in D$.

A symbolic way to say "y is a function of x" is by writing

y = f(x) ("y equals f of x")

In this notation, the symbol f represents the function. The letter x, called the **independent variable**, represents the input value of f, and y, the **dependent variable**, represents the corresponding output **value** of f at x.

$$x \xrightarrow{\text{Input}} f \xrightarrow{\text{Output}} f(x)$$
(domain) (range)

The set *D* of all possible input values is called the **domain** of the function. The set of all values of f(x) as x varies throughout *D* is called the **range** of the function. The range may not include every element in the set *Y*.

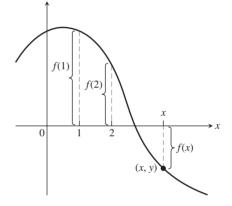
Graphs of Functions

Another way to visualize a function is its graph. If f is a function with domain D, its graph consists of the points in the Cartesian plane whose coordinates are the input-output pairs for f. In set notation, the graph is

$$\{(x, f(x)) \mid x \in D\}$$

The Vertical Line Test

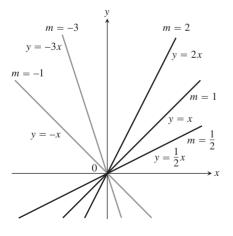
Not every curve you draw is the graph of a function. A function f can have only one value f(x) for each x in its domain, so no *vertical line* can intersect the graph of a function more than once.

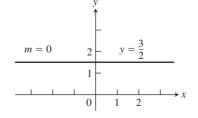


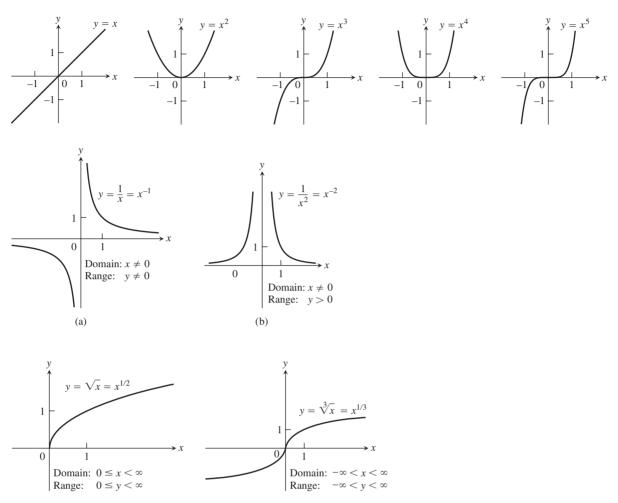
If (x, y) lies on the graph of f, then the value y = f(x) is the height of the graph above the point x (or below x if f(x) is negative).

Types of Functions

Linear Functions A function of the form f(x) = mx + b







Power Functions A function $f(x) = x^a$, where *a* is a constant.

Polynomials A function *p* is a **polynomial** if

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$

where *n* is a nonnegative integer and the numbers $a_0, a_1, a_2, ..., a_n$ are real constants (called the **coefficients** of the polynomial). All polynomials have domain $(-\infty, \infty)$. If the leading coefficient $a_n \neq 0$ and n > 0, then *n* is called the **degree** of the polynomial.

Rational Functions A **rational function** is a quotient or ratio of two polynomials:

$$f(x) = \frac{p(x)}{q(x)}$$

where p and q are polynomials. The domain of a rational function is the set of all real x for which $q(x) \neq 0$.

DEFINITIONS Even Function, Odd Function A function y = f(x) is an even function of x if f(-x) = f(x), odd function of x if f(-x) = -f(x), for every x in the function's domain.

DEFINITION Composition of Functions

If f and g are functions, the **composite** function $f \circ g$ ("f composed with g") is defined by

 $(f \circ g)(x) = f(g(x)).$

The domain of $f \circ g$ consists of the numbers x in the domain of g for which g(x) lies in the domain of f.

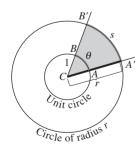
 $x \longrightarrow g \quad -g(x) \longrightarrow f \quad \longrightarrow f(g(x))$

Shift Formulas

Vertical Shifts	
y = f(x) + k	Shifts the graph of $f up k$ units if $k > 0$
	Shifts it $down k $ units if $k < 0$
Horizontal Shifts	
y = f(x + h)	Shifts the graph of <i>f left h</i> units if $h > 0$
	Shifts it <i>right</i> $ h $ units if $h < 0$

Vertical and Hor For $c > 1$,	izontal Scaling and Reflecting Formulas
y = cf(x)	Stretches the graph of f vertically by a factor of c .
$y = \frac{1}{c}f(x)$	Compresses the graph of f vertically by a factor of c .
y = f(cx) $y = f(x/c)$	Compresses the graph of f horizontally by a factor of c . Stretches the graph of f horizontally by a factor of c .
For $c = -1$,	
y = -f(x) $y = f(-x)$	Reflects the graph of f across the <i>x</i> -axis. Reflects the graph of f across the <i>y</i> -axis.

Trigonometric Functions



The radian measure of angle *ACB* is the length θ of arc *AB* on the unit circle centered at *C*. The value of θ can be found from any other circle, however, as the ratio s/r. Thus $s = r\theta$ is the length of arc on a circle of radius *r* when θ is measured in radians.

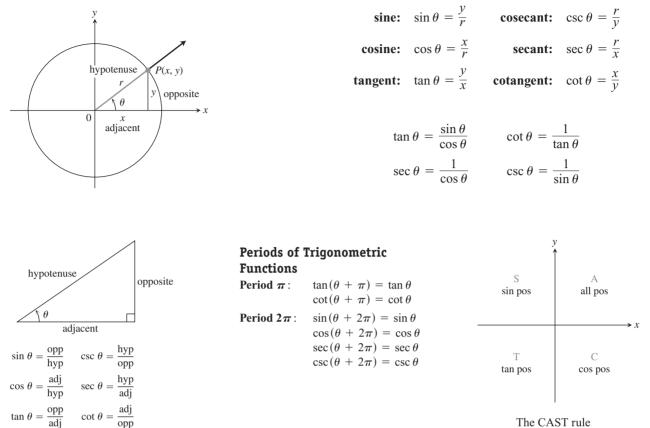
Conversion Formulas

1 degree =
$$\frac{\pi}{180}$$
 (\approx 0.02) radians

Degrees to radians: multiply by
$$\frac{\pi}{180}$$

1 radian =
$$\frac{180}{\pi}$$
 (\approx 57) degrees

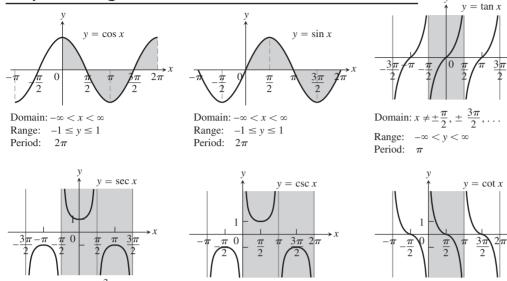
Radians to degrees: multiply by $\frac{180}{\pi}$



The CAST rule

Values of sin Degrees θ (radians)	$\frac{\theta,\cos\theta,}{-180}$ $-\pi$	and tan -135 $\frac{-3\pi}{4}$	-90	$\frac{-45}{\frac{-\pi}{4}}$	0	$\frac{30}{\frac{\pi}{6}}$	$\frac{45}{\frac{\pi}{4}}$	$\frac{60}{\frac{\pi}{3}}$	$90 \\ \frac{\pi}{2}$	$\frac{120}{\frac{2\pi}{3}}$	$\frac{135}{\frac{3\pi}{4}}$	$\frac{150}{\frac{5\pi}{6}}$	180 π	$\frac{270}{\frac{3\pi}{2}}$	360 2π
$\sin heta$	0	$\frac{-\sqrt{2}}{2}$	-1	$\frac{-\sqrt{2}}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
$\cos \theta$	-1	$\frac{-\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$\frac{-\sqrt{2}}{2}$	$\frac{-\sqrt{3}}{2}$	-1	0	1
$\tan \theta$	0	1		-1	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$\frac{-\sqrt{3}}{3}$	0		0

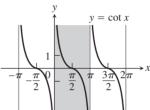
Graphs of Trigonometric Functions



 $\frac{3\pi}{2}$ Domain: x <u>+</u> Range: $y \le -1$ and $y \ge 1$ Period: 2π

Domain: $x \neq 0, \pm \pi, \pm 2\pi$, Range: $y \le -1$ and $y \ge 1$

Period: 2π



Domain: $x \neq 0, \pm \pi, \pm 2\pi$, Range: $-\infty < y < \infty$ Period: π

Trigonometric Identities

Basic Formulas $\cos(-\theta) = \cos\theta$ $\sin(-\theta) = -\sin\theta$ $\cos^2\theta + \sin^2\theta = 1.$ $\sec(-\theta) = \sec\theta$ $\tan(-\theta) = -\tan\theta$ $\csc(-\theta) = -\csc\theta$ $1 + \tan^2 \theta = \sec^2 \theta.$ $\cot(-\theta) = -\cot\theta$ $1 + \cot^2 \theta = \csc^2 \theta.$

Addition Formulas

 $\cos(A + B) = \cos A \cos B - \sin A \sin B$ $\sin(A + B) = \sin A \cos B + \cos A \sin B$

Half-Angle Formulas

 $\cos^2\theta = \frac{1+\cos 2\theta}{2}$ $\sin^2\theta = \frac{1-\cos 2\theta}{2}$

Double-Angle Formulas

 $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ $\sin 2\theta = 2\sin\theta\cos\theta$

The Law of Cosines

If a, b, and c are sides of a triangle ABC and if θ is the angle opposite c, then

 $c^2 = a^2 + b^2 - 2ab\cos\theta.$

