Chapter 1 Preliminaries

Real Numbers

Real numbers are numbers that can be expressed as decimals, such as

$$
\begin{aligned}
-\frac{3}{4} & =-0.75000 \ldots \\
\frac{1}{3} & =0.33333 \ldots \\
\sqrt{2} & =1.4142 \ldots
\end{aligned}
$$

We distinguish four special subsets of real numbers.

1. The natural numbers, namely $1,2,3,4, \ldots$
2. The integers, namely $0, \pm 1, \pm 2, \pm 3, \ldots$
3. The rational numbers, namely the numbers that can be expressed in the form of a fraction m / n, where m and n are integers and $n \neq 0$. Examples are

$$
\frac{1}{3}, \quad-\frac{4}{9}=\frac{-4}{9}=\frac{4}{-9}, \quad \frac{200}{13}, \quad \text { and } \quad 57=\frac{57}{1}
$$

4. The irrational numbers. They are characterized by having nonterminating and nonrepeating decimal expansions. An example is $\sqrt{2}$.

Rules for Inequalities

If a, b, and c are real numbers, then:

1. $a<b \Rightarrow a+c<b+c$
2. $a<b \Rightarrow a-c<b-c$
3. $a<b$ and $c>0 \Rightarrow a c<b c$
4. $a<b$ and $c<0 \Rightarrow b c<a c$

Special case: $a<b \Rightarrow-b<-a$
5. $\quad a>0 \Rightarrow \frac{1}{a}>0$
6. If a and b are both positive or both negative, then $a<b \Rightarrow \frac{1}{b}<\frac{1}{a}$

Absolute Value

The absolute value of a number x, denoted by $|x|$, is defined by the formula

$$
|x|=\left\{\begin{aligned}
x, & x \geq 0 \\
-x, & x<0
\end{aligned}\right.
$$

An alternate definition of $|x|$ is $|x|=\sqrt{x^{2}}$ since $\sqrt{ }$ always denotes the nonnegative square root. Geometrically, $|x-y|=$ the distance between x and y.

Absolute Value Properties

1. $|-a|=|a| \quad$ A number and its additive inverse or negative have the same absolute value.
2. $|a b|=|a||b| \quad$ The absolute value of a product is the product of the absolute values.
3. $\left|\frac{a}{b}\right|=\frac{|a|}{|b|} \quad$ The absolute value of a quotient is the quotient of the absolute values.
4. $|a+b| \leq|a|+|b| \quad$ The triangle inequality. The absolute value of the sum of two numbers is less than or equal to the sum of their absolute values.

Intervals

Absolute Values and Intervals

If a is any positive number, then
5. $|x|=a \quad$ if and only if $x= \pm a$
6. $|x|<a \quad$ if and only if $-a<x<a$
7. $|x|>a \quad$ if and only if $x>a$ or $x<-a$
8. $|x| \leq a \quad$ if and only if $-a \leq x \leq a$
9. $|x| \geq a \quad$ if and only if $x \geq a$ or $x \leq-a$

Lines

DEFINITION Slope

The constant

$$
m=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\tan \phi
$$

is the slope of the nonvertical line $P_{1} P_{2}$.

The equation

$$
y=y_{1}+m\left(x-x_{1}\right)
$$

is the point-slope equation of the line that passes through the point $\left(x_{1}, y_{1}\right)$ and has slope m.

The equation

$$
y=m x+b
$$

is called the slope-intercept equation of the line with slope m and y-intercept b.

Distance and Circles

Distance Formula for Points in the Plane

The distance between $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is

$$
d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

The standard equation of a circle with center (h, k) and radius a is $(x-h)^{2}+(y-k)^{2}=a^{2}$.

Parabolas

The Graph of $y=a x^{2}+b x+c, \quad a \neq 0$
The graph of the equation $y=a x^{2}+b x+c, a \neq 0$, is a parabola. The parabola opens upward if $a>0$ and downward if $a<0$. The axis is the line

$$
x=-\frac{b}{2 a} .
$$

The vertex of the parabola is the point where the axis and parabola intersect. Its x-coordinate is $x=-b / 2 a$; its y-coordinate is found by substituting $x=-b / 2 a$ in the parabola's equation.

DEFINITION Function

A function from a set D to a set Y is a rule that assigns a unique (single) element $f(x) \in Y$ to each element $x \in D$.

A symbolic way to say " y is a function of x " is by writing

$$
y=f(x) \quad(" y \text { equals } f \text { of } x ")
$$

In this notation, the symbol f represents the function. The letter x, called the independent variable, represents the input value of f, and y, the dependent variable, represents the corresponding output value of f at x.

The set D of all possible input values is called the domain of the function. The set of all values of $f(x)$ as x varies throughout D is called the range of the function. The range may not include every element in the set Y.

Graphs of Functions

Another way to visualize a function is its graph. If f is a function with domain D, its graph consists of the points in the Cartesian plane whose coordinates are the input-output pairs for f. In set notation, the graph is

$$
\{(x, f(x)) \mid x \in D\} .
$$

The Vertical Line Test

Not every curve you draw is the graph of a function. A function f can have only one value $f(x)$ for each x in its domain, so no vertical line can intersect the graph of a function more than once.

Types of Functions

Linear Functions A function of the form $f(x)=m x+b$

If (x, y) lies on the graph of f, then the value $y=f(x)$ is the height of the graph above the point x (or below x if $f(x)$ is negative).

Power Functions A function $f(x)=x^{a}$, where a is a constant.

(a)

(b)

Polynomials A function p is a polynomial if

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where n is a nonnegative integer and the numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are real constants (called the coefficients of the polynomial). All polynomials have domain $(-\infty, \infty)$. If the leading coefficient $a_{n} \neq 0$ and $n>0$, then n is called the degree of the polynomial.

Rational Functions A rational function is a quotient or ratio of two polynomials:

$$
f(x)=\frac{p(x)}{q(x)}
$$

where p and q are polynomials. The domain of a rational function is the set of all real x for which $q(x) \neq 0$.

DEFINITIONS Even Function, Odd Function

A function $y=f(x)$ is an
even function of \boldsymbol{x} if $f(-x)=f(x)$,
odd function of \boldsymbol{x} if $f(-x)=-f(x)$,
for every x in the function's domain.

DEFINITION Composition of Functions

If f and g are functions, the composite function $f \circ g$ (" f composed with g ") is defined by

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$ consists of the numbers x in the domain of g for which $g(x)$ lies in the domain of f.

Shift Formulas

Vertical Shifts

$y=f(x)+k \quad$ Shifts the graph of $f u p k$ units if $k>0$
Shifts it down $|k|$ units if $k<0$

Horizontal Shifts

$y=f(x+h) \quad$ Shifts the graph of fleft h units if $h>0$
Shifts it right $|h|$ units if $h<0$

Vertical and Horizontal Scaling and Reflecting Formulas

For $c>1$,
$y=c f(x) \quad$ Stretches the graph of f vertically by a factor of c.
$y=\frac{1}{c} f(x) \quad$ Compresses the graph of f vertically by a factor of c.
$y=f(c x) \quad$ Compresses the graph of f horizontally by a factor of c.
$y=f(x / c) \quad$ Stretches the graph of f horizontally by a factor of c.
For $c=-1$,
$y=-f(x) \quad$ Reflects the graph of f across the x-axis.
$y=f(-x) \quad$ Reflects the graph of f across the y-axis.

Trigonometric Functions

The radian measure of angle $A C B$ is the length θ of arc $A B$ on the unit circle centered at C. The value of θ can be found from any other circle, however, as the ratio s / r. Thus $s=r \theta$ is the length of arc on a circle of radius r when θ is measured in radians.

Conversion Formulas

$$
1 \text { degree }=\frac{\pi}{180}(\approx 0.02) \text { radians }
$$

Degrees to radians: multiply by $\frac{\pi}{180}$

$$
1 \text { radian }=\frac{180}{\pi}(\approx 57) \text { degrees }
$$

Radians to degrees: multiply by $\frac{180}{\pi}$

$$
\begin{array}{rr}
\operatorname{sine}: \sin \theta=\frac{y}{r} & \text { cosecant: } \csc \theta=\frac{r}{y} \\
\text { cosine: } \cos \theta=\frac{x}{r} & \text { secant: } \sec \theta=\frac{r}{x} \\
\text { tangent: } \tan \theta=\frac{y}{x} & \text { cotangent: } \cot \theta=\frac{x}{y} \\
\tan \theta=\frac{\sin \theta}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta} \\
\sec \theta=\frac{1}{\cos \theta} & \csc \theta=\frac{1}{\sin \theta}
\end{array}
$$

$\sin \theta=\frac{\text { opp }}{\text { hyp }} \quad \csc \theta=\frac{\text { hyp }}{\text { opp }}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }} \quad \sec \theta=\frac{\text { hyp }}{\text { adj }}$
$\tan \theta=\frac{\text { opp }}{\text { adj }} \quad \cot \theta=\frac{\text { adj }}{\text { opp }}$

Periods of Trigonometric

Functions
Period $\pi: \quad \tan (\theta+\pi)=\tan \theta$ $\cot (\theta+\pi)=\cot \theta$
Period $2 \pi: \quad \sin (\theta+2 \pi)=\sin \theta$ $\cos (\theta+2 \pi)=\cos \theta$ $\sec (\theta+2 \pi)=\sec \theta$ $\csc (\theta+2 \pi)=\csc \theta$

The CAST rule

Values of $\sin \theta, \cos \theta$, and $\tan \theta$ for selected values of θ															
Degrees	-180	-135	-90	-45	0	30	45	60	90	120	135	150	180	270	360
θ (radians)	$-\pi$	$\frac{-3 \pi}{4}$	$\frac{-\pi}{2}$	$\frac{-\pi}{4}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π	$\frac{3 \pi}{2}$	2π
$\boldsymbol{\operatorname { s i n }} \theta$		$\frac{-\sqrt{2}}{2}$		$\frac{-\sqrt{2}}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
$\boldsymbol{\operatorname { c o s }} \theta$		$\frac{-\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$\frac{-\sqrt{2}}{2}$	$\frac{-\sqrt{3}}{2}$	-1	0	1
$\boldsymbol{\operatorname { t a n }} \theta$	0	1		-1	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$\frac{-\sqrt{3}}{3}$	0		0

Graphs of Trigonometric Functions

Domain: $-\infty<x<\infty$
Range: $-1 \leq y \leq 1$
Period: 2π

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$
Range: $\quad y \leq-1$ and $y \geq 1$
Period: 2π

Domain: $-\infty<x<\infty$
Range: $-1 \leq y \leq 1$
Period: 2π

Domain: $x \neq 0, \pm \pi, \pm 2 \pi, \ldots$
Range: $y \leq-1$ and $y \geq 1$
Period: 2π

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}$,
Range: $-\infty<y<\infty$
Period: π

Domain: $x \neq 0, \pm \pi, \pm 2 \pi, \ldots$
Range: $-\infty<y<\infty$
Period: π

Trigonometric Identities

Basic Formulas

$$
\begin{aligned}
& \cos ^{2} \theta+\sin ^{2} \theta=1 \\
& 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& 1+\cot ^{2} \theta=\csc ^{2} \theta
\end{aligned}
$$

$$
\begin{array}{ll}
\cos (-\theta)=\cos \theta & \sin (-\theta)=-\sin \theta \\
\sec (-\theta)=\sec \theta & \tan (-\theta)=-\tan \theta \\
& \csc (-\theta)=-\csc \theta \\
& \cot (-\theta)=-\cot \theta
\end{array}
$$

Addition Formulas

$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\sin (A+B)=\sin A \cos B+\cos A \sin B$

Double-Angle Formulas

$$
\begin{aligned}
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
\sin 2 \theta & =2 \sin \theta \cos \theta
\end{aligned}
$$

Half-Angle Formulas

$\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$
$\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$

The Law of Cosines

If a, b, and c are sides of a triangle $A B C$ and if θ is the angle opposite c, then

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

