Chapter 3 Differentiation

Derivative Function

The derivative of the function $f(x)$ with respect to the variable x is the function f^{\prime} whose value at x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided the limit exists, equivalently, $f^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}$.

Notation

There are many ways to denote the derivative of a function $y=f(x)$, where the independent variable is x and the dependent variable is y. Some common alternative notations for the derivative are

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D(f)(x)=D_{x} f(x)
$$

To indicate the value of a derivative at a specified number $x=a$, we use the notation

$$
f^{\prime}(a)=\left.\frac{d y}{d x}\right|_{x=a}=\left.\frac{d f}{d x}\right|_{x=a}=\left.\frac{d}{d x} f(x)\right|_{x=a} .
$$

Differentiability Implies Continuity

If f has a derivative at $x=c$, then f is continuous at $x=c$.

The Intermediate Value Property of Derivatives

If a and b are any two points in an interval on which f is differentiable, then f^{\prime} takes on every value between $f^{\prime}(a)$ and $f^{\prime}(b)$.

Differentiation Rules

Derivative of a Constant Function

If f has the constant value $f(x)=c$, then

$$
\frac{d f}{d x}=\frac{d}{d x}(c)=0 .
$$

Power Rule

If r is a real number, then

$$
\frac{d}{d x} x^{r}=r x^{r-1}
$$

Derivative Sum Rule

If u and v are differentiable functions of x, then their sum $u+v$ is differentiable at every point where u and v are both differentiable. At such points,

$$
\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x}
$$

Derivative Product Rule

If u and v are differentiable at x, then so is their product $u v$, and

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

Constant Multiple Rule

If u is a differentiable function of x, and c is a constant, then

$$
\frac{d}{d x}(c u)=c \frac{d u}{d x} .
$$

Derivative Quotient Rule

If u and v are differentiable at x and if $v(x) \neq 0$, then the quotient u / v is differentiable at x, and

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

$f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$ is called the second derivative of f because it is the derivative of the first derivative. Notationally,

$$
f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d y^{\prime}}{d x}=y^{\prime \prime}=D^{2}(f)(x)=D_{x}^{2} f(x)
$$

Instantaneous Rate of Change

The instantaneous rate of change of f with respect to x at x_{0} is the derivative

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided the limit exists.

Velocity

Velocity (instantaneous velocity) is the derivative of position with respect to time. If a body's position at time t is $s=f(t)$, then the body's velocity at time t is

$$
v(t)=\frac{d s}{d t}=\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}
$$

Speed

Speed $=|v(t)|=\left|\frac{d s}{d t}\right|$

Acceleration, Jerk

Acceleration is the derivative of velocity with respect to time. If a body's position at time t is $s=f(t)$, then the body's acceleration at time t is

$$
a(t)=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}
$$

Jerk is the derivative of acceleration with respect to time:

$$
j(t)=\frac{d a}{d t}=\frac{d^{3} s}{d t^{3}} .
$$

Derivatives of Trigonometric Functions

$\frac{d}{d x}(\sin x)=\cos x, \quad \frac{d}{d x}(\cos x)=-\sin x, \quad \frac{d}{d x}(\tan x)=\sec ^{2} x, \quad \frac{d}{d x}(\cot x)=-\csc ^{2} x$, $\frac{d}{d x}(\sec x)=\sec x \tan x, \quad \frac{d}{d x}(\csc x)=-\csc x \cot x$

The Chain Rule

If $f(u)$ is differentiable at the point $u=g(x)$ and $g(x)$ is differentiable at x, then the composite function $(f \circ g)(x)=f(g(x))$ is differentiable at x, and

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

In Leibniz's notation, if $y=f(u)$ and $u=g(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

where $d y / d u$ is evaluated at $u=g(x)$.

It sometimes helps to think about the Chain Rule this way: If $y=f(g(x))$, then

$$
\frac{d y}{d x}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

In words, differentiate the "outside" function f and evaluate it at the "inside" function $g(x)$ left alone; then multiply by the derivative of the "inside function."

Parametric Curve

If x and y are given as functions

$$
x=f(t), \quad y=g(t)
$$

over an interval of t-values, then the set of points $(x, y)=(f(t), g(t))$ defined by these equations is a parametric curve. The equations are parametric equations for the curve.

Parametric Formula for $d y / d x$

If all three derivatives exist and $d x / d t \neq 0$,

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}
$$

Parametric Formula for $\boldsymbol{d}^{\mathbf{2}} \boldsymbol{y} / \boldsymbol{d} \boldsymbol{x}^{\mathbf{2}}$

If the equations $x=f(t), y=g(t)$ define y as a twice-differentiable function of x, then at any point where $d x / d t \neq 0$,

$$
\frac{d^{2} y}{d x^{2}}=\frac{d y^{\prime} / d t}{d x / d t}
$$

Implicit Differentiation: Suppose an equation involving x and y defines y as a function of x implicitly. To find $\frac{d y}{d x}$:

1. Differentiate both sides of the equation with respect to x, treating y as a differentiable function of x.
2. Collect the terms with $d y / d x$ on one side of the equation.
3. Solve for $d y / d x$.

Related Rates Problem Strategy

1. Draw a picture and name the variables and constants. Use t for time. Assume that all variables are differentiable functions of t.
2. Write down the numerical information (in terms of the symbols you have chosen).
3. Write down what you are asked to find (usually a rate, expressed as a derivative).
4. Write an equation that relates the variables. You may have to combine two or more equations to get a single equation that relates the variable whose rate you want to the variables whose rates you know.
5. Differentiate with respect to t. Then express the rate you want in terms of the rate and variables whose values you know.
6. Evaluate. Use known values to find the unknown rate.

Linearization, Standard Linear Approximation

If f is differentiable at $x=a$, then the approximating function

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

is the linearization of f at a. The approximation

$$
f(x) \approx L(x)
$$

of f by L is the standard linear approximation of f at a. The point $x=a$ is the center of the approximation. Note that $L(x)$ is nothing more than the tangent line to $y=f(x)$ at $x=a$.

Differential

Let $y=f(x)$ be a differentiable function. The differential $\boldsymbol{d} \boldsymbol{x}$ is an independent variable.
The differential $\boldsymbol{d} \boldsymbol{y}$ is

$$
d y=f^{\prime}(x) d x, \text { and } f(a+\Delta x) \approx f(a)+f^{\prime}(a) \Delta x=f(a)+d y
$$

Sensitivity to Change

The equation $d f=f^{\prime}(x) d x$ tells how sensitive the output of f is to a change in input at different values of x. The larger the value of f^{\prime} at x, the greater the effect of a given change $d x$. As we move from a to a nearby point $a+d x$, we can describe the change in f in three ways:

	True	Estimated
Absolute change	$\Delta f=f(a+d x)-f(a)$	$d f=f^{\prime}(a) d x$
Relative change	$\frac{\Delta f}{f(a)}$	$\frac{d f}{f(a)}$
Percentage change	$\frac{\Delta f}{f(a)} \times 100$	$\frac{d f}{f(a)} \times 100$

