Chapter 2 Limits and Continuity

Average Rate of Change over an Interval

The average rate of change of $y=f(x)$ with respect to x over the interval $\left[x_{1}, x_{2}\right]$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}, \quad h \neq 0 .
$$

Limits

If $f(x)$ gets arbitrarily close to L (as close to L as we like) for all x sufficiently close to x_{0}, we say that f approaches the limit L as x approaches x_{0}, and we write

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

A secant to the graph $y=f(x)$. Its slope is $\Delta y / \Delta x$, the average rate of change of f over the interval $\left[x_{1}, x_{2}\right]$.
which is read "the limit of $f(x)$ as x approaches x_{0} is L ". Essentially, the definition says that the values of $f(x)$ are close to the number L whenever x is close to x_{0} (on either side of x_{0}).

The formal definition of limit is:

The relation of δ and ϵ in the definition of limit.

Limit of a Function

Let $f(x)$ be defined on an open interval about x_{0}, except possibly at x_{0} itself. We say that the limit of $\boldsymbol{f}(\boldsymbol{x})$ as \boldsymbol{x} approaches $\boldsymbol{x}_{\boldsymbol{0}}$ is the number \boldsymbol{L}, and write

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

if, for every number $\epsilon>0$, there exists a corresponding number $\delta>0$ such that for all x,

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

How to Find Algebraically a δ for a Given f, L, x_{0}, and $\epsilon>0$

The process of finding a $\delta>0$ such that for all x

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

can be accomplished in two steps.

1. Solve the inequality $|f(x)-L|<\epsilon$ to find an open interval (a, b) containing x_{0} on which the inequality holds for all $x \neq x_{0}$.
2. Find a value of $\delta>0$ that places the open interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ centered at x_{0} inside the interval (a, b). The inequality $|f(x)-L|<\epsilon$ will hold for all $x \neq x_{0}$ in this δ-interval.

Using the formal definition of limit, one can prove the limit laws:

Limit Laws

If L, M, c and k are real numbers and

$$
\lim _{x \rightarrow c} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=M, \text { then }
$$

1. Sum Rule: $\quad \lim _{x \rightarrow c}(f(x)+g(x))=L+M$

The limit of the sum of two functions is the sum of their limits.
2. Difference Rule:

$$
\lim _{x \rightarrow c}(f(x)-g(x))=L-M
$$

The limit of the difference of two functions is the difference of their limits.

$$
\text { 3. Product Rule: } \quad \lim _{x \rightarrow c}(f(x) \cdot g(x))=L \cdot M
$$

The limit of a product of two functions is the product of their limits.
4. Constant Multiple Rule: $\quad \lim _{x \rightarrow c}(k \cdot f(x))=k \cdot L$

The limit of a constant times a function is the constant times the limit of the function.
5. Quotient Rule:

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}, \quad M \neq 0
$$

The limit of a quotient of two functions is the quotient of their limits, provided the limit of the denominator is not zero.
6. Power Rule: If r and s are integers with no common factor and $s \neq 0$, then

$$
\lim _{x \rightarrow c}(f(x))^{r / s}=L^{r / s}
$$

provided that $L^{r / s}$ is a real number. (If s is even, we assume that $L>0$.)
The limit of a rational power of a function is that power of the limit of the function, provided the latter is a real number.

Limits of Polynomials Can Be Found by Substitution

If $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, then

$$
\lim _{x \rightarrow c} P(x)=P(c)=a_{n} c^{n}+a_{n-1} c^{n-1}+\cdots+a_{0}
$$

Limits of Rational Functions Can Be Found by Substitution If the Limit of the Denominator Is Not Zero

If $P(x)$ and $Q(x)$ are polynomials and $Q(c) \neq 0$, then

$$
\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)} .
$$

The Sandwich Theorem

Suppose that $g(x) \leq f(x) \leq h(x)$ for all x in some open interval containing c, except possibly at $x=c$ itself. Suppose also that

$$
\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L .
$$

Then $\lim _{x \rightarrow c} f(x)=L$.

Note: Analogues of these Laws apply to limits as $x \rightarrow \pm \infty$ and one-sided limits.
Examples and Techniques:
a) $\lim _{x \rightarrow c} k=k(k=$ constant $)$
b) $\lim _{x \rightarrow c} x^{p}=c^{p}$ (where c^{p} is defined)
c) $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-x}=\lim _{x \rightarrow 1} \frac{(x+2)(x-1)}{x(x-1)}=\lim _{x \rightarrow 1}(x+2)=3$ (Canceling a Common Factor)
d) $\lim _{x \rightarrow 2} \frac{\sqrt{x+7}-3}{x-2}=\lim _{x \rightarrow 2} \frac{(\sqrt{x+7}-3)(\sqrt{x+7}+3)}{(x-2)(\sqrt{x+7}+3)}$
$=\lim _{x \rightarrow 2} \frac{x-2}{(x-2)(\sqrt{x+7}+3)}=\lim _{x \rightarrow 2} \frac{1}{\sqrt{x+7}+3}=\frac{1}{6}$ (Creating and Canceling a Common Factor)
e) $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ (θ in radians)
f) $\lim _{\theta \rightarrow 0} \frac{\sin k \theta}{\theta}=k$ (k constant)
g) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=\lim _{x \rightarrow 0}=\frac{-2 \sin ^{2}\left(\frac{x}{2}\right)}{x}$
$=\lim _{x \rightarrow 0}(-2)\left(\frac{\sin \frac{x}{2}}{x}\right) \sin \left(\frac{x}{2}\right)$
$=(-2)\left(\frac{1}{2}\right)(0)=0$ (using f) and trigonometric identity: $\cos x=1-2 \sin ^{2}\left(\frac{x}{2}\right)$ half-angle formula)

One-Sided Limits

To have a limit L as x approaches c, a function f must be defined on both sides of c and its values $f(x)$ must approach L as x approaches c from either side. Because of this, ordinary limits are called two-sided.

If f fails to have a two-sided limit at c, it may still have a one-sided limit, that is, a limit if the approach is only from one side. If the approach is from the right, the limit is a right-hand limit. From the left, it is a left-hand limit.

A function $f(x)$ has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$
\begin{array}{cccc}
\lim _{x \rightarrow c} f(x)=L \\
\text { (2-sided limit) } & & \lim _{x \rightarrow c^{-}} f(x)=L \quad \text { and } \quad & \lim _{x \rightarrow c^{+}} f(x)=L . \\
\text { (left-hand limit) } & & \text { (right-hand limit) }
\end{array}
$$

EXAMPLE

$$
\begin{aligned}
& \text { At } x=0: \quad \lim _{x \rightarrow 0^{+}} f(x)=1, \\
& \lim _{x \rightarrow 0^{-}} f(x) \text { and } \lim _{x \rightarrow 0} f(x) \text { do not exist. The function is } \\
& \text { not defined to the left of } x=0 \text {. } \\
& \text { At } x=1: \quad \lim _{x \rightarrow 1^{-}} f(x)=0 \text { even though } f(1)=1 \text {, } \\
& \lim _{x \rightarrow 1^{+}} f(x)=1 \text {, } \\
& \lim _{x \rightarrow 1} f(x) \text { does not exist. The right- and left-hand limits } \\
& \text { are not equal. } \\
& \text { At } x=2: \quad \lim _{x \rightarrow 2^{-}} f(x)=1 \text {, } \\
& \lim _{x \rightarrow 2^{+}} f(x)=1 \text {, } \\
& \lim _{x \rightarrow 2} f(x)=1 \text { even though } f(2)=2 \text {. } \\
& \text { At } x=3: \quad \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3} f(x)=f(3)=2 \text {. } \\
& \text { At } x=4: \quad \lim _{x \rightarrow 4^{-}} f(x)=1 \text { even though } f(4) \neq 1 \text {, } \\
& \lim _{x \rightarrow 4^{+}} f(x) \text { and } \lim _{x \rightarrow 4} f(x) \text { do not exist. The function is } \\
& \text { not defined to the right of } x=4 \text {. }
\end{aligned}
$$

At every other point c in $[0,4], f(x)$ has limit $f(c)$.

Limit as x approaches ∞ or $-\infty$

1. We say that $f(x)$ has the limit L as \boldsymbol{x} approaches infinity and write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

if, for every number $\epsilon>0$, there exists a corresponding number M such that for all x

$$
x>M \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

2. We say that $f(x)$ has the limit L as \boldsymbol{x} approaches minus infinity and write

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

if, for every number $\epsilon>0$, there exists a corresponding number N such that for all x

$$
x<N \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

Horizontal Asymptote

A line $y=b$ is a horizontal asymptote of the graph of a function $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=b \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=b
$$

Infinity, Negative Infinity as Limits

1. We say that $\boldsymbol{f}(\boldsymbol{x})$ approaches infinity as \boldsymbol{x} approaches \boldsymbol{x}_{0}, and write

$$
\lim _{x \rightarrow x_{0}} f(x)=\infty
$$

if for every positive real number B there exists a corresponding $\delta>0$ such that for all x

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad f(x)>B
$$

2. We say that $\boldsymbol{f}(\boldsymbol{x})$ approaches negative infinity as \boldsymbol{x} approaches \boldsymbol{x}_{0}, and write

$$
\lim _{x \rightarrow x_{0}} f(x)=-\infty
$$

if for every negative real number $-B$ there exists a corresponding $\delta>0$ such that for all x

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad f(x)<-B
$$

Vertical Asymptote

A line $x=a$ is a vertical asymptote of the graph of a function $y=f(x)$ if either

$$
\lim _{x \rightarrow a^{+}} f(x)= \pm \infty \quad \text { or } \quad \lim _{x \rightarrow a^{-}} f(x)= \pm \infty
$$

Examples:
h) $\lim _{x \rightarrow \pm \infty} k=k \quad(k=$ constant $)$
i) For integer $n>0$,
$\lim _{x \rightarrow \infty} x^{n}=\infty$
$\lim _{x \rightarrow-\infty} x^{n}=\left\{\begin{aligned} \infty & (n \text { even }) \\ -\infty & (n \text { odd })\end{aligned}\right.$
$\lim _{x \rightarrow \pm \infty} \frac{1}{x^{n}}=0$
$\lim _{x \rightarrow \pm \infty} \frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}}=\frac{a_{n}}{b_{m}} \lim _{x \rightarrow \pm \infty} x^{n-m}$
(provided $a_{n}, b_{m} \neq 0$)
j) For integer $n>0$,
$\lim _{x \rightarrow c^{ \pm}} \frac{1}{(x-c)^{n}}= \begin{cases}+\infty & (n \text { even }) \\ \pm \infty & (n \text { odd })\end{cases}$

Continuity

Continuous at a Point

Interior point: A function $y=f(x)$ is continuous at an interior point \boldsymbol{c} of its domain if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Endpoint: A function $y=f(x)$ is continuous at a left endpoint \boldsymbol{a} or is continuous at a right endpoint \boldsymbol{b} of its domain if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad \text { or } \quad \lim _{x \rightarrow b^{-}} f(x)=f(b), \quad \text { respectively } .
$$

Continuity Test

A function $f(x)$ is continuous at $x=c$ if and only if it meets the following three conditions.

1. $f(c)$ exists $(c$ lies in the domain of $f)$
2. $\lim _{x \rightarrow c} f(x)$ exists $\quad(f$ has a limit as $x \rightarrow c)$
3. $\lim _{x \rightarrow c} f(x)=f(c) \quad$ (the limit equals the function value)

A continuous function is one that is continuous at every point of its domain.
For example, $y=1 / x$ is not continuous on $[-1,1]$, but it is continuous over its domain: $(-\infty, 0) \cup(0, \infty)$

The Intermediate Value Theorem for Continuous Functions

A function $y=f(x)$ that is continuous on a closed interval $[a, b]$ takes on every value between $f(a)$ and $f(b)$. In other words, if y_{0} is any value between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ for some c in $[a, b]$.

Tangents and Derivatives

Slope, Tangent Line

The slope of the curve $y=f(x)$ at the point $P\left(x_{0}, f\left(x_{0}\right)\right)$ is the number

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \quad \text { (provided the limit exists). }
$$

The tangent line to the curve at P is the line through P with this slope.

FIGURE 2.67 The slope of the tangent
line at P is $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$.

Finding the Tangent to the Curve $y=f(x)$ at $\left(x_{0}, y_{0}\right)$

1. Calculate $f\left(x_{0}\right)$ and $f\left(x_{0}+h\right)$.
2. Calculate the slope

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

3. If the limit exists, find the tangent line as

$$
y=y_{0}+m\left(x-x_{0}\right)
$$

All of these ideas refer to the same thing:

1. The slope of $y=f(x)$ at $x=x_{0}$
2. The slope of the tangent to the curve $y=f(x)$ at $x=x_{0}$
3. The rate of change of $f(x)$ with respect to x at $x=x_{0}$
4. The derivative of f at $x=x_{0}$
5. The limit of the difference quotient, $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
