math 110

Math 110 (Calculus I)

Math 110

 

Calculus I

 

Credits

 

Lec.

 

Tut.

 

3

 

3

 

1

 

Course Summary

 

This course is a first Calculus dealing mainly with differential calculus. After a discussion of few mathematical preliminaries, we introduce functions and models, limits and derivatives, differentiation rules, and finally applications of differentiation.

 

 

Prerequisites

 

-

 

None

 

Textbook

 

J.Stewart

 

 

Calculus, Early Transcendentals Sixth Edition.

 

 

International Metric Version

 

 

2008

 

 

Objectives:

On completion of the course, the students should be able to

  1.  handle functions occurring in calculus and in the mathematical modeling of real-world problems;
  2.  grasp the central idea of limit and continuity, and its application in a variety of problems;
  3.  understand the main theme of calculus and its applications involving rates of change and the approximation of functions;
  4.  differentiate standard functions by applying the fundamental rules of differentiation;
  5.  compute the optimal values of functions and handle the optimization problems;
  6.  apply the concepts of monotonicity and concavity in sketching the plane curves;
  7.  deal with indeterminate forms and L’Hôpital’s rule;
  8.  understand the connection between derivatives and antiderivatives.

Course description:

1. Mathematical Preliminaries

  1. a. Numbers, Inequalities, and Absolute Values
  2. b.
  3. Coordinate Geometry and Lines
  4. c.
  5. Graphs of Second-Degree Equations
  6. d.
  7. Trigonometry

    2. Functions and Models

    1. a.
    2. Four Ways to represent a Function
    3. b.
    4. Mathematical Models
    5. c.
    6. New Functions from Old Functions
    7. d.
    8. Graphing Calculators and Computers
    9. e.
    10. Exponential Functions
    11. f.
    12. Inverse Functions and Logarithms

      3. Limits and Derivatives

      1. a.
      2. The Tangent and Velocity Problems
      3. b.
      4. The Limit of a Function
      5. c.
      6. Calculating Limits Using the Limit Laws
      7. d.
      8. Continuity
      9. e.
      10. Limits at Infinity; Horizontal Asymptotes
      11. f.
      12. Derivatives and Rates of Change
      13. g.
      14. The Derivative as a Function

        4. Differentiation Rules

        1. a.
        2. Derivatives of Polynomials and Exponential Functions
        3. b.
        4. The Product and Quotient Rules
        5. c.
        6. Derivatives of Trigonometric Functions
        7. d.
        8. The Chain Rule
        9. e.
        10. Implicit Differentiation
        11. f.
        12. Derivatives of Logarithmic Functions
        13. g.
        14. Rates of Change in the Sciences
        15. h.
        16. Exponential Approximations and Differentials Hyperbolic Functions

          5. Applications of Differentiation

          1. a.
          2. Maximum and Minimum Values
          3. b.
          4. The Mean Value Theorem
          5. c.
          6. How derivatives Affect the Shape of a Graph
          7. d.
          8. Intermediate Forms and L’Hospital Rule
          9. e.
          10. Summary of Curve Sketching
          11. f.
          12. Graphing with Calculus and Calculators
          13. g.
          14. Optimization Problems
          15. h.
          16. Antiderivatives

            Teaching Schedule:

            Delivery Type

             

            Number

             

            Lecture Length (hours)

             

            Student Hours

             

            Lecture

             

             

            39

             

             

            1

             

             

            39

             

             

            Tutorial

             

             

            13

             

             

            1

             

             

            13

             

             

            Private Study Hours

             

             

            117

             

             

            Total Contact Hours

             

             

            52

             

             

            Total Hours

             

             

            169

             

             

            Methods of Assessment:

            1- Coursework

            Assessment Type

             

            Notes (paper HW/Online)

             

            % of Formal Assessment

             

            In-course Assessment

             

             

            Weekly Paper HW

             

             

            10

             

             

            Total Percentage

             

             

            10

             

             

            2- Exams

            Assessment Type

             

            Notes (MCQ, etc …

             

            % of Formal Assessment

             

            First Exam

             

             

            Written

             

             

            30

             

             

            Second Exam

             

             

            Written

             

             

            30

             

             

            Final Exam

             

             

            Written

             

             

            40

             

             

            Total Percentage

             

             

            100

             

             


            آخر تحديث
            2/24/2013 8:01:12 PM
             

            أضف تعليقك
            الاسـم :
             
            البريد الالكتروني :
             
            رقم الجوال :
            عنوان التعليق :
             
            التـعـلـيـق :
             
            أدخل الأحرف
            الموجودة في الصورة :